Atomic Theory and Structure

Atomic Theory I (previous version): The Early Years


Did you know that scientists used to think that atoms resembled billiard balls or raisin bread, although neither of these views proved accurate? Atoms are so tiny that 20 million hydrogen atoms could fit on this dash -. In spite of their incredibly small size, scientists have come to an accurate understanding of atomic structure.


An updated version of the Atomic Theory I module is available. To view it, go here.

Until the final years of the nineteenth century, the accepted model of the atom resembled that of a billiard ball – a small, solid sphere. In 1897, J. J. Thomson dramatically changed the modern view of the atom with his discovery of the electron. Thomson's work suggested that the atom was not an "indivisible" particle as John Dalton had suggested but a jigsaw puzzle made of smaller pieces.

Thomson's notion of the electron came from his work with a nineteenth century scientific curiosity: the cathode ray tube. For years scientists had known that if an electric current was passed through a vacuum tube, a stream of glowing material could be seen; however, no one could explain why. Thomson found that the mysterious glowing stream would bend toward a positively charged electric plate. Thomson theorized, and was later proven correct, that the stream was in fact made up of small particles, pieces of atoms that carried a negative charge. These particles were later named electrons.

After Eugen Goldstein's 1886 discovery that atoms had positive charges, Thomson imagined that atoms looked like pieces of raisin bread, a structure in which clumps of small, negatively charged electrons (the "raisins") were scattered inside a smear of positive charges. In 1908, Ernest Rutherford, a former student of Thomson's, proved Thomson's raisin bread structure incorrect.

Rutherford proposes a planetary model of an atom

Rutherford performed a series of experiments with radioactive alpha particles.  While it was unclear at the time what the alpha particle was, it was known to be very tiny. Rutherford fired tiny alpha particles at solid objects such as gold foil. He found that while most of the alpha particles passed right through the gold foil, a small number of alpha particles passed through at an angle (as if they had bumped up against something) and some bounced straight back like a tennis ball hitting a wall. Rutherford's experiments suggested that gold foil, and matter in general, had holes in it!  These holes allowed most of the alpha particles to pass directly through, while a small number ricocheted off or bounced straight back because they hit a solid object.

In 1911, Rutherford proposed a revolutionary view of the atom. He suggested that the atom consisted of a small, dense core of positively charged particles in the center (or nucleus) of the atom, surrounded by a swirling ring of electrons. The nucleus was so dense that the alpha particles would bounce off of it, but the electrons were so tiny, and spread out at such great distances, that the alpha particles would pass right through this area of the atom. Rutherford's atom resembled a tiny solar system with the positively charged nucleus always at the center and the electrons revolving around the nucleus.

Figure 1: Interpreting Rutherford's gold foil experiment.

The positively charged particles in the nucleus of the atom were called protons. Protons carry an equal, but opposite, charge to electrons, but protons are much larger and heavier than electrons. 

Comprehension Checkpoint
Rutherford proposed that the atom resembled
Incorrect.
Correct!

Chadwick discovers the neutron

In 1932, James Chadwick discovered a third type of subatomic particle, which he named the neutron. Neutrons help stabilize the protons in the atom's nucleus. Because the nucleus is so tightly packed together, the positively charged protons would tend to repel each other normally. Neutrons help to reduce the repulsion between protons and stabilize the atom's nucleus. Neutrons always reside in the nucleus of atoms and they are about the same size as protons. However, neutrons do not have any electrical charge; they are electrically neutral.

Atoms are electrically neutral because the number of protons (+ charges) is equal to the number of electrons (- charges) and thus the two cancel out. As the atom gets larger, the number of protons increases, and so does the number of electrons (in the neutral state of the atom).  The illustration linked below compares the two simplest atoms, hydrogen and helium.

Atomic and ionic structure of the first 12 elements

Interactive Animation: Atomic and ionic structure of the first 12 elements

Comprehension Checkpoint
Neutrons have
Incorrect.
Correct!

Size, number, and weight of atoms

Atoms are extremely small. One hydrogen atom (the smallest atom known) is approximately 5 x 10-8 mm in diameter. To put that in perspective, it would take almost 20 million hydrogen atoms to make a line as long as this dash -. Most of the space taken up by an atom is actually empty because the electron spins at a very far distance from the nucleus. For example, if we were to draw a hydrogen atom to scale and used a 1-cm proton (about the size of this picture - proton), the atom's electron would spin at a distance of ~0.5 km from the nucleus. In other words, the atom would be larger than a football field!

Atoms of different elements are distinguished from each other by their number of protons (the number of protons is constant for all atoms of a single element; the number of neutrons and electrons can vary under some circumstances). To identify this important characteristic of atoms, the term atomic number (z) is used to describe the number of protons in an atom. For example, z = 1 for hydrogen and z = 2 for helium.

Another important characteristic of an atom is its weight, or atomic mass. The weight of an atom is roughly determined by the total number of protons and neutrons in the atom. While protons and neutrons are about the same size, the electron is more than 1,800 times smaller than the two. Thus the electrons' weight is inconsequential in determining the weight of an atom – it's like comparing the weight of a flea to the weight of an elephant. Refer to the animation above to see how the number of protons plus neutrons in the hydrogen and helium atoms corresponds to the atomic mass.



Activate glossary term highlighting to easily identify key terms within the module. Once highlighted, you can click on these terms to view their definitions.

Activate NGSS annotations to easily identify NGSS standards within the module. Once highlighted, you can click on them to view these standards.